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Abstract— We present a methodology for robust determina-
tion of chemical reaction network interconnections. Given time
series data that are collected from experiments and taking into
account the measurement error, we minimize the 1-norm of
the decision variables (reaction rates) keeping the data in close
Euler-fit with a general model structure based on mass action
kinetics which models the species’ dynamics. We illustrate our
methodology on a hypothetical chemical reaction network under
various experimental scenarios.

I. INTRODUCTION

A common problem in engineering and the physical sci-
ences is how to robustly determine the interaction topology
of a networked system using time series data collected from
experiments. On one hand, such data is often abundant and a
high computational effort is required to extract information
about the system properties. At the same time, a large
amount of data is often necessary to distinguish between
different models and decide which components play the most
important role in such networks.

Our study focuses on chemical reaction networks where
the main objective is to identify the chemical pathways and
mechanisms (how the chemical complexes interact within
the chemical network) rather than extracting the parameters
(the rates of the various reactions) that best fit the particular
time series data. The interconnection topology is of greater
importance than the particular parameter settings for several
reasons. First, the parameters are often collected under
noisy experimental conditions and are sensitive to laboratory
variations such as temperature and the environment. Second,
as is often the case with large networks, persistence of
observed phenomena is robust to a large range of parameter
values and therefore identifying these parameters exactly is
not of great interest. Indeed, networks often have the same
functionality in the neighborhood of the nominal reaction
rates. But most importantly, networks are rarely robust to the
random rewiring of the underlying interconnection structure
and hence determining the network structure is much more
important than determining the kinetic parameters that fit the
particular data.

In this paper we follow a top-down optimization based
approach for estimating the connectivity in such networks,
proposing models from first principles assuming mass action
kinetics and no a priori information about the intercon-
nection topology. In particular, we argue that minimizing

A. Papachristodoulou is with the Department of Engineering Sci-
ence, University of Oxford, Parks Road, Oxford, OX1 3PJ, U.K.
antonis@eng.ox.ac.uk.

B. Recht is with the Center for the Mathematics of Information, California
Institute of Technology, 1200 E. California Blvd., MC 136-93, Pasadena CA
91125, U.S.A.. brecht@caltech.edu.

the one-norm of all possible reaction rates can extract
sparse feasible solutions which indicate likely interaction
topologies. This optimization can be performed using Linear
Programming (LP) for which efficient algorithms exist that
can solve large optimization problems. Moreover, the robust
counterpart with polytopic uncertainties in the data is also
a Linear Program. This is in stark contrast to least-squares
where the robust counterpart is at best a second order
cone problem (SOCP) [1], which is more computationally
expensive than linear programming.

The paper is organized as follows. First, we outline related
work in Section II. We describe the system classes under
study in Section III. In Section IV we describe our Linear
Programming algorithm for determining the reaction network
from time series data and discuss the advantages of over a
least-squares approach. In Section V we apply our algorithm
to a hypothetical chemical reaction network and discuss
performance under various scenarios.

II. RELATED WORK

Determining the pathways in chemical reaction networks
from time series data has been an active area of research for
over a decade. A recent review of available techniques can be
found in [2] or [3], but earlier articles, such as [4], also list
several approaches to this network identification problem.

We summarize the available techniques as follows. One
class of techniques that fall under the rubric of ‘stationary-
state Jacobian Matrix Elements’ analyze the system behavior
when it is perturbed locally from the steady state and look
at whether the concentration of one species is increased or
decreased when another species’ concentration is increased.
Building on this approach, Kholodenko et al [5], [6] have
provided an approach to determine the functional interactions
in cellular signaling and gene networks, taking into account
the ‘modular’ structure of the networks in question. Alter-
natively, inferences about the topology of the network can
be made by introducing pulse changes in concentration of a
chemical species in the network, and observing the network’s
response, concluding causal chemical connectivities [7].

A variety of data-driven approaches attempt to extract
structure from existing experimental data without the ability
to tailor experiments to the modeling task. For example,
researchers have used time series measurements of con-
centrations to construct correlation functions of concentra-
tions [8]. An approach using Artificial Neural Networks [9]
tries to ‘learn’ patterns from the complicated and noisy
data and to detect trends in the chemical reaction pathways.
Related to this is a genetic algorithm approach to study
the evolutionary development of a reaction mechanism [10].



In [11] the Singular Value Decomposition was used to obtain
a family of candidate networks. Since the optimal networks
were typically much more dense than would be realistically
expected, the sparsest network in the family was identified
using robust regression.

Modeling reaction networks using mass action kinetics
(described in Section III) results in nonlinear Volterra-type
dynamics similar to those studied in [12]. However, since
we are interested in determining the ‘sparsest’ network with
mass-action kinetics, our objective function on the kinetic
parameters is quite different.

III. CHEMICAL REACTION NETWORKS

Let R denote the set of real numbers, and Rn the
n−dimensional Euclidean space. Similarly, denote by R+

(R++) the non-negative (positive) real line, and by Rn
+

(Rn
++) the n−dimensional non-negative (positive) orthant.
By a Chemical Reaction Network we mean a series

of elementary reaction steps, i.e., collisions of reactant
molecules to form products, which we assume are balanced
stoichiometric equations. We follow the modeling framework
described in [13].

First, let us explain what we mean by an elementary
reaction step. Suppose A, B and C are chemical species,
and suppose that the reaction that occurs between them is

A + B
k1−→ C (1)

For this chemical reaction, which says that a molecule of A
reacts with a molecule of B to give a molecule of C with
rate k1, we can define three sets:

• A set of complexes, i.e., whatever appears at the head
and tails of the reactions, C = {A + B,C};

• A set of species that participate in the reactions, S =
{A,B,C}; and

• A set of reactions R = {A + B → C} and associated
with it a vector of reaction rates k = k1.

Suppose now we put together several such elementary
reactions, to form the reaction network shown in Figure 1. In
this network we have put nodes for complexes and arrows
to define reactions, with kij the rate at which a reaction
occurs with reactants complex i and products complex j.
What we are interested in, is the structure of the reaction
rate dynamics that result from this interconnection, if we
assume mass action kinetics. For this network, the set of
complexes is C = {A, 2B,A + C,D,B + E}, the set of
species is S = {A,B,C, D, E} and the set of reactions is
R = {A → B + E, 2B → A, 2B → B + E,A + C →
A,A + C → D,B + E → A + C} with reaction rates
k = [k15, k21, k25, k31, k34, k53]. For each of the above sets,
we associate a vector field, and, for indexing, we put an
arbitrary ordering on the complexes and species as indicated
in Figure 1.

The dynamics of a general chemical reaction network, i.e.,
a network with a species set S, a set of complexes C and a
set of reactions R with reaction rates k, are assumed to be
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Fig. 1. A chemical reaction network

described by differential equation system in the form:

ẋ =
|S|∑
i=1

|S|∑
j=1

kijx
yi(yj − yi) (2)

where x is species concentration vector and yi is a vector of
length |S| (the cardinality of set S) showing how complex
i is comprised of the species in the network, i.e., in our
example

yT
i

 A
...
E

 = ci

where ci is complex i in the set C. For example yT
3 =

[1, 0, 1, 0, 0] in the network in Figure 1. Also, we have used
the Laurent-Schwartz notation for xyi which means

xyi =
|S|∏
k=1

xyik

k

The only unknowns in (2) are the parameters kij which
completely determine the network topology. arge-scale net-
works are seldom heavily connected, but rather enjoy sparsity
and modularity [5]. Therefore rather than identifying the
‘best fit’ of kij , we seek to establish a sparse interaction
topology between the vertices vi, through the determination
of the sparsity structure of the matrix K = [kij ].

IV. PROBLEM STATEMENT AND SOLUTION
APPROACH

Suppose time series data has been collected experimentally
for the physical system and (for now) that all xi, i = 1, . . . , n
can be measured. This data takes the form (tp, x̂(tp)) where
p = 1, . . . ,M . We assume such experiments yield data
at small time steps which may not be regular, and the
measurements are contaminated with errors that can be
captured as bounds on each measurement

x∗i (tp)− ε−i (p) ≤ x̂i(tp) ≤ x∗i (tp) + ε+i (p) (3)



for (ε−p , ε+p ) ∈ R2
+, p = 1, . . . ,M and i = 1, . . . , n.

The problem of nonlinear system identification is generally
solved through discretization of the proposed model [14],
[15], [12]. Assuming that samples are taken at sufficiently
short time intervals, various discretization methods can be
applied, the simplest of which is Euler

x(tk+1) = x(tk) + (tk+1 − tk)f(x(tk)), x(t0) = x0 (4)

Here f(x(tk) denotes the right hand side of Equation (2).
Each discretization step incurs an error O((tk+1 − tk)2)
locally, and the method is first order globally. Other, more
complicated formulae can be proposed to increase the global
order of the discretization, such as a modified Euler dis-
cretization, taking the form

x(tk+1) = x(tk) +
(tk+1 − tk)

2
(f(x(tk)) + f(x̃(tk+1))) ,

x̃(tk+1) = x(tk) + (tk+1 − tk)f(x(tk)), x(t0) = x0

or even Runge-Kutta methods. It was also shown in [14],
that including ‘extra zero dynamics’ in the sampling process
can decrease further the local discretization error.

Regardless of the discretization method, the reaction rates
appear linearly in these approximations to the ODE (2). In
this case, a variety of estimation techniques can be applied
to fit the parameters to the observed data. We assume here
that we have measurements for all xi, i = 1, . . . , n, i.e., we
have nM measurements. Given a data point (tq, x̂(tq)) and
knowledge of the next time step tq+1 yields an estimate for
xi(tq+1) of the form

xi(tq+1) = x̂i(tq) + (tq+1 − tq)fi(x(tq)), (5)

for each i = 1, . . . , n and q = 0, . . . ,M − 1. A popular
criterion for evaluating the quality of a set of parameters is
the 2-norm of the error between xi(tq+1) and the measured
values x̂i(tq+1). We can write such an error metric as

min ‖Ak − b‖2

where k ∈ Rn2
is a vector containing kij , which we treat as

‘decision variables’, and A ∈ R(M×n)×n2
and b ∈ R(M×n)

are defined by ‘stacking’ all such conditions obtained by
manipulating the data as per (5). The interesting fact is that
the minimum of the 2-norm error has a closed-form solution,

k∗ = A†b , (AT A)−1AT b

where AT denotes the transpose of A.
There are a few drawbacks of the above least-squares

approach. In the presence of extra constraints on the variables
k (constrained regression), the problem does not generally
have a closed-form solution. Such constrained minimizations,
the simplest of which is Second Order Cone Problems
(SOCP), may carry a significant computational cost for large
problems. The same is true if the data are contaminated with
error which needs to be taken into account when producing
k∗ [1]. Furthermore, the solution to a least-squares problem
will not in general be sparse. Regularized least-squares can
be used, in which the solution k∗ can be asked to be small,

but this solution is also not guaranteed to be sparse [16] and
the bi-criterion weights have to be chosen judiciously.

Of course obtaining the sparsest solution k∗ so that
‖Ak− b‖ in some norm is minimized is not computationally
tractable as the 0-1 combinatorial element is in the problem
statement. A popular relaxation for such combinatorial prob-
lems is to minimize the 1−norm of the solution so that the
constraints are satisfied within certain bounds. That is, we
propose solving the problem

min ‖k‖1

s.t. − l−i ≤ aT
i k − bi ≤ l+i , i = 1, . . . ,mM (6)

with (l−i , l+i ) ∈ R2
+ are small numbers and a′is are the

rows of A and bis the elements of b. We stress that this is
just a heuristic in obtaining a sparse solution. However, the
above optimization problem is a Linear Program (LP), for
which robust algorithms exist that can solve large problem
instances. Furthermore, since the optimization problem is
polyhedral, redundant and linearly dependent constraints may
allow for a sparse solution. The disadvantage of using this
approach to solve the problem at hand, is that the data may
not be in close-fit, but of course we would expect some errors
to be present, not only because of measurement errors but
also because of the discretization approach employed.

A further advantage of this approach is that we may incor-
porate uncertainties in the measurements with little additional
computational complexity. Indeed, the robust counterpart of
the above problem is

min cT x

s.t. Ax− b ∈ K, ∀A ∈ P

where P is a set in which A is allowed to live. If P can
be described by a polytope, whose vertices are known, then
the robust counterpart of a conic program is the same conic
program. However, seldom do we know the vertices of the
polytope, and they may be too many, which makes the
robust counterpart a lot harder than the nominal problem.
If ellipsoidal uncertainty is used to describe the uncertainty,
then the robust counterpart of an LP is an SOCP, which is
more complicated to solve than solving an LP. However, if
we model the uncertainty in the measurements as in (3) we
can use Soyster’s framework [17] to formulate the robust
counterpart that is still an LP. We note that the framework
introduced in [18] gives a series of LPs if not all data
are subject to uncertainty. In particular, if the coefficients
aij of matrix A are perturbed so that they take values
in [aij − εij , aij + εij ] then the following LP is a robust
formulation of Program (6):

min ‖k‖1

s.t. −l−i ≤
N∑

j=1

aijkj +
N∑

j=1

εijµj − bi ≤ l+i ,

i = 1, . . . ,mM

−µi ≤ ki ≤ µi, i = 1, . . . , n2

µi ≥ 0, i = 1, . . . , n2 (7)



Using the above ideas, we aim to extract from data
the sparsity pattern in the solution K of the optimiza-
tion problem, which is related to the connectivity of the
underlying graph structure, drawing important conclusions
on the interaction topologies inside the network. In the
next section, we will illustrate this idea, implementing this
Linear Programming approach to variety of different network
identification scenarios for a particular chemical reaction
network.

V. NUMERICAL EXPERIMENTS

Consider a network with 5 species S = {A,B,C, D, E}
and 5 complexes, C = {A, 2B,A + C,D,B + E}. Suppose
we are given time series data for all the species this system,
but we do not know the topology of the interconnection.
The first experiment examines the recovered interconnection
diagram using the (non-robust) linear program (6). Later on,
we will consider the same problem with missing data on one
species and a robust network determination problem.

We have implemented the network shown in Figure 1 with
a K matrix of the form:

K =


0 0 0 0 0.8492

0.3386 0 0 0 0.4290
0.8244 0 0 0.0563 0

0 0 0 0 0
0 0 0.7364 0 0

 (8)

and have simulated the system with uniformly distributed
initial conditions. The data sets were obtained by simulating
the above set of nonlinear equations using SIMULINK. Ten
such data sets were generated and incorporated in the linear
program.

Since we do not know how the chemical network is
connected, and we cannot even speculate how part of it may
be connected, we need to assume a general structure for
it and write the dynamics for the complete network. The
structure of all possible interconnections that we could have
with these complexes is shown in Figure 2. A least-squares
approach, would yield the following array of reaction rates:

0 0.1 1 0.1 1
1 0 0.8 0.2 1
1 0.6 0 1 0.9

0.1 0.8 0.9 0 0
1 0.9 1 0.9 0


and essentially the only zero element predicted is k45. Note
that the diagonal of this matrix does not enter into our
optimization. We write these entries as zero, but this is
merely a convenient notational place holder.

The resulting K from our linear programming approach
is given by 

0 0 1 0 1
1 0 0.5 0.4 0.9
1 0 0 1 0.2
0 0 0.8 0 0

0.1 0 1 0.2 0
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Fig. 2. The complete network

Observe that the second column is equal to zero which
implies that the second complex is not the product of
any reaction. Having determined this sparse structure for
the system, we can repeat the same LP optimization, but
now impose the new information about the sparse structure
obtained in the new linear program, i.e. that k12 = 0 etc.
Iterating once on this data, we get the following results:

0 0 1 0 1
1 0 0.5 0.3 0.7
1 0 0 1 0
0 0 0.8 0 0
0 0 0.8 0 0


This experiment reveals that the sparsity structure can be
further reduced by an iterative procedure. One could also
use the above as a ‘probability’ lookup table, and investigate
sparsity structures, such as setting k23 and k24 equal to zero.
Indeed this solution is also feasible, which reveals additional
structure in the matrix K. Working this way, we have found
that the following non-zero matrix results in feasible LPs,
with l = 0.01:

Knom =


0 0 k13 0 k15

k21 0 0 0 k25

k31 0 0 k34 0
0 0 0 0 0
0 0 k53 0 0


which is the same as the network shown in Figure 1, but for
a link between complex 1 and complex 3. At this point we
should recall that there is no unique reaction mechanism that
can fit a data set; in fact, we can only hope to invalidate a
postulated reaction mechanism using data. We will return to
this issue in the concluding section.

The next experiment we performed was to assume that
some of the species could not be observed in the experiments
for technical reasons. In particular, we assumed that the
concentration of species A could not be measured. This
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Fig. 3. Simulation of network shown in Figure 1 with reaction rates (8) (solid line) and the network shown in Figure 2 with reaction rates given by (9)
(dashed line) from two initial conditions.

does not pose significant problems, as we can replace the
occurrences of the terms in the vector field involving the
variable x1 with a vector of new variables q which we also
ask to be ‘sparse’, through minimization of the sum of qi.
Eight such substitutions need to be made; the result is a
matrix of the form:

Kmiss =


0 0 0 0 0

k21 0 k23 0 k25

0 0 0 0 0
0 0 k43 0 0
0 0 k53 k54 0


and a q = [q1, . . . , q8] which corresponds to nonzero entries
for k31, k34, k35 k13 and k15. Therefore in this case too, a
sparse topology interconnection is obtained, but the matrix
in this case is not as sparse as before.

Suppose now that data are uncertain, and we want to
search for robust sparse structures for the K matrix. Using
the framework developed in [18], we set ε+i (p) = 0.0004
and ε−i (p) = 0.0005 for i = 1, . . . , 5 and all data points
p — such uncertainty could be due to roundoff errors (see
Equation (3)). A robust LP can be formulated, as discussed in
section IV, and the resulting optimization results in a network
with a richer sparsity structure:

Krob =


0 0 k13 0 k15

k21 0 k23 0 k25

k31 0 0 k34 0
0 0 k43 0 0
0 0 k53 0 0


Finally, we note that once a candidate network is de-

termined, we can perform a least-squares minimization to
obtain the best k values for a particular sparsity structure.
For example, if we choose Knom as the sparsity structure
and fit the least squares error over all 10 experiments, we

get the following K matrix:

K =


0 0 0.0364 0 0.7721

0.3295 0 0 0 0.3999
0.7804 0 0 0.0553 0

0 0 0 0 0
0 0 0.6668 0 0

 (9)

In figures 3A and 3B we show how the nominal system,
with the K matrix given by Equation (8) compares in simu-
lation with the K matrix given by Equation (9) for different
initial conditions. We see that some initial conditions have
better behavior for the two parameter sets than others. There
is hope, however, that using other methods and through
choice of a particular initial condition we can eliminate a
parameter set, as the initial condition in Figure 3B shows
some deviation in the dynamics of x1.

VI. DISCUSSION AND CONCLUSIONS

We have presented a system identification heuristic for
recovering the structure of chemical reaction networks from
noisy and incomplete measurements using linear program-
ming. Our method couples simulation with experimental data
and attempts to find a sparse set of parameters consistent with
the measurements. We have shown how to add parameter
uncertainty at little computational cost. And we have demon-
strated numerically that this technique is able to recover
reasonable approximations to true network topologies in the
presence of noise and missing data.

Even though our final least-squares fit recovers reaction
rates close to the true rates, our heuristic does not recover
the true network structure. Indeed proving that a particular
reaction mechanism is correct is a misnomer. This is because
there may be another reaction mechanism that may be
consistent with the available data, within experimental error
etc. Disproving that a mechanism could ever be represented
by data is possible, and new techniques exist in that direc-
tion [19]. Furthermore, it is of great interest to characterize



the networks for which our heuristic would recover the true
sparsity pattern.

A model that has been developed using a top-down
approach is sometimes too complicated for analysis. Even
though for particular network structures there are important
results that establish stability, existence of equilibria etc [13],
in general this task is difficult and reduced order models need
to be constructed for analysis.

Our heuristic technique is aimed specifically in obtaining
robust, sparse, network interconnections to approximately
fit data rather than in fitting the ‘best’ K which would
vary for different experimental conditions. Specific a priori
knowledge for the system structure, such as modularity etc.,
will definitely reduce significantly the computational burden.
However, we insist that our problem stays within the class
of linear programs, for which reliable algorithms exist of
complexity of order n4M (where n is the number of species
and M is the number of data points) not taking into account
a sparse structure implied from an a priori knowledge of the
system interconnection.

Finally, we note that even though mass action kinetics are
common in chemical reaction networks modeling, there are
many situations where some other model description such as
the Generalized Mass Action model or the S-system model
would be preferred [20], [21], [22]. The above technique
can be used under dynamics with other ‘canonical form’
descriptions, as long as Equations (5) are affine in the
unknown parameters. Otherwise, a linearization approach can
be employed, or some other nonlinear methods can be used.
The effectiveness of our scheme in such modeling schemes
is a promising direction left for future study.
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